Advances in flood inundation modeling and opportunities for high resolution geospatial data resources

Brett F. Sanders

Associate Professor Dept. of Civil and Environmental Engineering University of California, Irvine

Los Angeles Region – Imagery Acquisition Consortium August 30, 2007

Outline

- Trends in flood inundation modeling
- Recent experience
 - St. Francis dam-break study
 - Glasgow urban flooding study
- Opportunities for LAR-IAC

Outline

- Trends in flood inundation modeling
- Recent experience
 - St. Francis dam-break study
 - Glasgow urban flooding study
- Opportunities for LAR-IAC

Trends in flood inundation modeling

- Flood inundation models have long been used to predict flood zones (e.g., FEMA)
 - Exceedance probability floods
 - Dam-safety programs
- · Model capabilities have steadily progressed
 - More physics, more detail, in parallel with computational power
 - Uniform flow -> Unsteady 1D -> Unsteady 2D -> Unsteady 3D
- Future progress will be controlled by data availability, resolution and accuracy.
 - University researchers just beginning to consider how geospatial datasets (imagery, DEMs, etc.) should be processed to support flood modeling objectives.

Important time of transition

- From model development to model parameterization and application for decision support
 - Models are robust and efficient
 - Reliability of predictions now limited by parameter uncertainty: ground elevation and flow resistance factors.
- Today's challenges
 - Data processing methodologies are needed to streamline the model parameterization and execution.
 - Need better understanding of information required for decision-making. Models need to be customized to deliver appropriate information.

Outline

- Trends in flood inundation modeling
- Recent experience
 - St. Francis dam-break study
 - Glasgow urban flooding study
- Opportunities for LAR-IAC

Research at UC Irvine

- · Development of robust 2D flow modeling codes
 - Applications include river flooding, tidal circulation, storm surge inundation, dam-break flooding, etc.
- Performance Attributes of Models
 - Perfectly conserves fluid mass
 - Mass residual equal to numerical precision
 - Predictions are monotone
 - No spurious oscillations
 - Conditionally stable
 - Time step must satisfy CFL condition.
 - No constraint on terrain smoothness for stability.
 - Most practical applications will run on a desktop computer.
 - No need for supercomputing capability.

Outline

- Trends in flood inundation modeling
- Recent experience
 - St. Francis dam-break study
 - Glasgow urban flooding study
- Opportunities for LAR-IAC

Long Term Research Objectives

- Integration of flood simulation algorithms into GIS for decision making purposes
 - Planning Mode
 - Permitting, insurance, and infrastructure management
 - Response Mode
 - Evacuations, traffic management, first response efforts
 - Requires integration of real-time precipitation and/or stream flow data.
- Range of flooding scenarios: intense rainfall, dam-break, extreme tides, tsunamis, channels blocked by debris, water main breaks, blocked sewers, etc.
- A better understanding of the information required by decision managers is needed.
 - Would welcome your input and opportunities to partner.

Possible Application Areas Impacts of sea level rise Flood vulnerability Drainage issues: pumping, sewers, etc. Siting of critical infrastructure (hospitals, emergence response units, power substations), grading of roads, etc. Public health issues (pathogens in surface waters) Forecasts of localized flooding (by coupling real-time precipitation data) Flooded streets and highways (hydroplaning hazards) Real time response to flood events Evacuations Traffic Management Routing of first responders

